Logistic regression with outcome and covariates missing separately or simultaneously
نویسندگان
چکیده
Estimation methods are proposed for fitting logistic regression in which outcome and covariate variables are missing separately or simultaneously. One of the two proposed estimators is an extension of the validation likelihood estimator of BreslowandCain (1988). The other is a joint conditional likelihood estimator that uses both validation and nonvalidation data. Large sample properties of the proposed estimators are studied under certain regularity conditions. Simulation results show that the joint conditional likelihood estimator is more efficient than the validation likelihood estimator, weighted estimator, and complete-case estimator. The practical use of the proposedmethods is illustrated with data from a cable TV survey study in Taiwan. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Inference using conditional logistic regression with missing covariates.
When there are many nuisance parameters in a logistic regression model, a popular method for eliminating these nuisance parameters is conditional logistic regression. Unfortunately, another common problem in a logistic regression analysis is missing covariate data. With many nuisance parameters to eliminate and missing covariates, many investigators exclude any subject with missing covariates a...
متن کاملمقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی
Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...
متن کاملDemystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data
When outcomes are missing for reasons beyond an investigator’s control, there are two different ways to adjust a parameter estimate for covariates that may be related both to the outcome and to missingness. One approach is to model the relationships between the covariates and the outcome and use those relationships to predict the missing values. Another is to model the probabilities of missingn...
متن کاملتحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند
Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...
متن کاملImputing missing covariate values for the Cox model
Multiple imputation is commonly used to impute missing data, and is typically more efficient than complete cases analysis in regression analysis when covariates have missing values. Imputation may be performed using a regression model for the incomplete covariates on other covariates and, importantly, on the outcome. With a survival outcome, it is a common practice to use the event indicator D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 66 شماره
صفحات -
تاریخ انتشار 2013